2,908 research outputs found

    Universal Non-Invertible Symmetries

    Full text link
    It is well-known that gauging a finite 0-form symmetry in a quantum field theory leads to a dual symmetry generated by topological Wilson line defects. These are described by the representations of the 0-form symmetry group which form a 1-category. We argue that for a d-dimensional quantum field theory the full set of dual symmetries one obtains is in fact much larger and is described by a (d-1)-category, which is formed out of lower-dimensional topological quantum field theories with the same 0-form symmetry. We study in detail a 2-categorical piece of this (d-1)-category described by 2d topological quantum field theories with 0-form symmetry. We further show that the objects of this 2-category are the recently discussed 2d condensation defects constructed from higher-gauging of Wilson lines. Similarly, dual symmetries obtained by gauging any higher-form or higher-group symmetry also form a (d-1)-category formed out of lower-dimensional topological quantum field theories with that higher-form or higher-group symmetry. A particularly interesting case is that of the 2-category of dual symmetries associated to gauging of finite 2-group symmetries, as it describes non-invertible symmetries arising from gauging 0-form symmetries that act on (d-3)-form symmetries. Such non-invertible symmetries were studied recently in the literature via other methods, and our results not only agree with previous results, but our approach also provides a much simpler way of computing various properties of these non-invertible symmetries. We describe how our results can be applied to compute non-invertible symmetries of various classes of gauge theories with continuous disconnected gauge groups in various spacetime dimensions. We also discuss the 2-category formed by 2d condensation defects in any arbitrary quantum field theory.Comment: 75 pages. v2: Minor improvement

    Generalized Global Symmetries

    Get PDF
    A qq-form global symmetry is a global symmetry for which the charged operators are of space-time dimension qq; e.g. Wilson lines, surface defects, etc., and the charged excitations have qq spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (qq=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have 't Hooft anomalies, which prevent us from gauging them, but lead to 't Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.Comment: 49 pages plus appendices. v2: references adde

    Non-Liquid Cellular States

    Full text link
    The existence of quantum non-liquid states and fracton orders, both gapped and gapless states, challenges our understanding of phases of entangled matter. We generalize Wen's cellular topological states to liquid or non-liquid cellular states. We propose a mechanism to construct more general non-abelian states by gluing gauge-symmetry-breaking vs gauge-symmetry-extension interfaces as extended defects in a cellular network, including defects of higher-symmetries. Our approach also includes the anyonic particle/string condensation and composite string (p-string)/membrane condensations. This also shows gluing the familiar extended topological quantum field theory or conformal field theory data via topology, geometry, and renormalization consistency criteria (via certain modified group cohomology or cobordism theory data) in a tensor network can still guide us to analyze the non-liquid states. (Part of the abelian construction can be understood from the K-matrix Chern-Simons theory approach and coupled-layer-by-junction constructions.) This may also lead us toward a unifying framework for quantum systems of both higher-symmetries and sub-system/sub-dimensional symmetries.Comment: 42 pages. Subtitle: Gluing Gauge-(Higher)-Symmetry-Breaking vs -Extension Interfacial Defect
    • …
    corecore